Advancing the PAM Algorithm to Semi-Supervised k-Medoids Clustering

Varování

Publikace nespadá pod Filozofickou fakultu, ale pod Fakultu informatiky. Oficiální stránka publikace je na webu muni.cz.
Autoři

JÁNOŠOVÁ Miriama LANG Andreas BUDÍKOVÁ Petra SCHUBERT Erich DOHNAL Vlastislav

Rok publikování 2024
Druh Článek ve sborníku
Konference 17th International Conference on Similarity Search and Applications (SISAP)
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
www https://link.springer.com/chapter/10.1007/978-3-031-75823-2_19
Doi http://dx.doi.org/10.1007/978-3-031-75823-2_19
Klíčová slova semi-supervised clustering;k-medoids;partitioning around medoids;FasterPAM;semi-supervised classification;DISA;LMI
Přiložené soubory
Popis The analysis of complex, weakly labeled data is increasingly popular, presenting unique challenges. Traditional unsupervised clustering aims to uncover interrelated sets of objects using feature-based similarity of the objects, but this approach often hits its limits for complex multimedia data. Thus, semi-supervised clustering that exploits small amounts of labeled training data has gained traction recently. % In this paper, we propose LabeledPAM, a semi-supervised extension of FasterPAM, a state-of-the-art k-medoids clustering algorithm. Our approach is applicable in semi-supervised classification tasks, where labels are assigned to clusters with minimal labeled data, as well as in semi-supervised clustering scenarios, identifying new clusters with unknown labels. We evaluate our proposal against other semi-supervised clustering techniques suitable for arbitrary distances, demonstrating its efficacy and versatility.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.