Role umělé inteligence v časném záchytu ložiskových změn plicního parenchymu při RTG vyšetření hrudníku: zkušenosti z retrospektivních studií na české populaci

Varování

Publikace nespadá pod Filozofickou fakultu, ale pod Lékařskou fakultu. Oficiální stránka publikace je na webu muni.cz.
Autoři

ČERNÝ Martin KVAK Daniel SCHWARZ Daniel MÍRKA Hynek DANDÁR Jakub

Rok publikování 2023
Druh Článek v odborném periodiku
Časopis / Zdroj Časopis lékařů českých
Fakulta / Pracoviště MU

Lékařská fakulta

Citace
www https://www.prolekare.cz/casopisy/casopis-lekaru-ceskych/2023-7-8-1/role-umele-inteligence-v-casnem-zachytu-loziskovych-zmen-plicniho-parenchymu-136671
Klíčová slova artificial intelligence, deep learning, computer-aided diagnosis, chest X-ray, lung cancer, solitary pulmonary nodules, pulmonary masses
Popis Zaměřujeme se na možné využití AI v rámci diagnostiky ložiskových změn plicního parenchymu, které mohou být projevem zhoubného nádoru plic, na základě skiagramu hrudníku. Ačkoliv ve srovnání s jinými metodami, především výpočetní tomografií (CT) hrudníku, tato modalita vykazuje nižší senzitivitu, vzhledem k rutinnímu provádění velmi často představuje první vyšetření, při němž jsou plicní léze zachyceny. Prezentujeme vlastní řešení založené na metodách hlubokého učení, které má za cíl zvýšit záchyt plicních lézí především v časných fázích onemocnění. Následně uvádíme výsledky našich předchozích původních prací, které validují navržený model ve dvou odlišných klinických prostředích – v prostředí spádové nemocnice s nízkou prevalencí nálezů a v prostředí specializovaného onkologického centra. Na základě kvantitativního srovnání se závěry radiologů různých úrovní zkušeností jsme zjistili, že náš model dosahuje vysoké senzitivity, na druhou stranu byla jeho specificita nižší než u oslovených radiologů. V kontextu klinických požadavků a diagnostiky asistované AI hraje zásadní roli zkušenost a klinické uvažování lékaře, proto se v současnosti přikláníme k modelům s vyšší senzitivitou na úkor nižší specificity. V případě suspekce, byť vyhodnocené jako nepravděpodobné, model nález raději předkládá lékaři. Na základě těchto výsledků lze očekávat, že v budoucnu bude AI hrát klíčovou roli v oblasti radiologie jako pomocný nástroj pro hodnotící specialisty. Aby k tomu mohlo dojít, je potřeba vyřešit nejen technické, ale i některé medicínské a regulatorní aspekty. Zásadní je dostupnost kvalitních a spolehlivých informací nejen o přínosech, ale také o limitacích možností strojového učení a AI v medicíně.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.