Twin-width of graphs on surfaces

Varování

Publikace nespadá pod Filozofickou fakultu, ale pod Fakultu informatiky. Oficiální stránka publikace je na webu muni.cz.
Autoři

KRÁĽ Daniel PEKÁRKOVÁ Kristýna ŠTORGEL Kenny

Rok publikování 2024
Druh Článek ve sborníku
Konference 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
Klíčová slova twin-width; graphs on surfaces; fixed parameter tractability
Popis Twin-width is a width parameter introduced by Bonnet, Kim, Thomassé and Watrigant [FOCS'20, JACM'22], which has many structural and algorithmic applications. Hliněný and Jedelský [ICALP'23] showed that every planar graph has twin-width at most 8. We prove that the twin-width of every graph embeddable in a surface of Euler genus g is at most 18?{47g} + O(1), which is asymptotically best possible as it asymptotically differs from the lower bound by a constant multiplicative factor. Our proof also yields a quadratic time algorithm to find a corresponding contraction sequence. To prove the upper bound on twin-width of graphs embeddable in surfaces, we provide a stronger version of the Product Structure Theorem for graphs of Euler genus g that asserts that every such graph is a subgraph of the strong product of a path and a graph with a tree-decomposition with all bags of size at most eight with a single exceptional bag of size max{6, 32g-37}.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.