Algebraic Reasoning over Relational Structures

Logo poskytovatele

Varování

Publikace nespadá pod Filozofickou fakultu, ale pod Přírodovědeckou fakultu. Oficiální stránka publikace je na webu muni.cz.
Autoři

JURKA Jan MILIUS Stefan URBAT Henning

Rok publikování 2024
Druh Článek ve sborníku
Konference Proceedings of the Fortieth Conference on the Mathematical Foundations of Programming Semantics, Volume 4
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
www https://entics.episciences.org/14598
Doi http://dx.doi.org/10.46298/entics.14598
Klíčová slova Relational Structure; Algebra; Variety; Birkhoff; Equation
Popis Many important computational structures involve an intricate interplay between algebraic features (given by operations on the underlying set) and relational features (taking account of notions such as order or distance). This paper investigates algebras over relational structures axiomatized by an infinitary Horn theory, which subsume, for example, partial algebras, various incarnations of ordered algebras, quantitative algebras introduced by Mardare, Panangaden, and Plotkin, and their recent extension to generalized metric spaces and lifted algebraic signatures by Mio, Sarkis, and Vignudelli. To this end, we develop the notion of clustered equation, which is inspired by Mardare et al.'s basic conditional equations in the theory of quantitative algebras, at the level of generality of arbitrary relational structures, and we prove that it is equivalent to an abstract categorical form of equation earlier introduced by Milius and Urbat. Our main results are a family of Birkhoff-type variety theorems (classifying the expressive power of clustered equations) and an exactness theorem (classifying abstract equations by a congruence property).
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.