Approximate Similarity Search in Metric Data by Using Region Proximity

Varování

Publikace nespadá pod Filozofickou fakultu, ale pod Fakultu informatiky. Oficiální stránka publikace je na webu muni.cz.
Autoři

AMATO Giuseppe SAVINO Pasquale FAUSTO Rabitti ZEZULA Pavel

Rok publikování 2000
Druh Článek ve sborníku
Konference Proceedings of the First DELOS Network of Excellence Workshop on "Information Seeking, Searching and Querying in Digital Libraries"
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
Obor Teorie informace
Popis The problem of approximated similarity search for the range and nearest neighbor queries is investigated for generic metric spaces. The search speedup is achieved by ignoring data regions with a small, user defined, proximity with respect to the query. For zero proximity, exact similarity search is performed. The problem of proximity of metric regions is explained and a probabilistic approach is applied. Approximated algorithms use a small amount of auxiliary data that can easily be maintained in main memory. The idea is implemented in a metric tree environment and experimentally evaluated on real-life files using specific performance measures. Improvements of two orders of magnitude can be achieved for moderately approximated search results. It is also demonstrated that the precision of proximity measures can significantly influence the quality of approximated algorithms.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.