Noncommutative multisolitons: moduli spaces, quantization, finite theta effects and stability
Autoři | |
---|---|
Rok publikování | 2001 |
Druh | Článek v odborném periodiku |
Časopis / Zdroj | Journal of High Energy Physics |
Fakulta / Pracoviště MU | |
Citace | |
www | http://jhep.cern.ch/stdsearch?paper=06(2001)040 |
Obor | Teoretická fyzika |
Klíčová slova | noncommutative solitons; moduli spaces; kahler geometry |
Popis | We find the N-soliton solution at infinite theta, as well as the metric on the moduli space corresponding to spatial displacements of the solitons. We use a perturbative expansion to incorporate the leading 1/theta corrections, and find an effective short range attraction between solitons. We study the stability of various solutions. We discuss the finite theta corrections to scattering, and find metastable orbits. Upon quantization of the two-soliton moduli space, for any finite theta, we find an s-wave bound state. |
Související projekty: |