Empirical Merging of Ontologies A Proposal of Universal Uncertainty Representation Framework

Varování

Publikace nespadá pod Filozofickou fakultu, ale pod Fakultu informatiky. Oficiální stránka publikace je na webu muni.cz.
Autoři

NOVÁČEK Vít SMRŽ Pavel

Rok publikování 2006
Druh Článek ve sborníku
Konference The Semantic Web: Research and Applications (Lecture notes in Computer Science 4011 / 2006 - Proceedings of ESWC'06 - 3rd European Semantic Web Conference)
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
www http://nlp.fi.muni.cz/projects/ole/pubs.html
Obor Informatika
Klíčová slova knowledge acquisition; ontology; uncertainty representation
Popis The significance of uncertainty representation has become obvious in the Semantic Web community recently. This paper presents our research on uncertainty handling in automatically created ontologies. A new framework for uncertain information processing is proposed. The research is related to OLE (Ontology LEarning) --- a project aimed at bottom--up generation and merging of domain--specific ontologies. Formal systems that underlie the uncertainty representation are briefly introduced. We discuss the universal internal format of uncertain conceptual structures in OLE then and offer a utilisation example then. The proposed format serves as a basis for empirical improvement of initial knowledge acquisition methods as well as for general explicit inference tasks.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.