Odd Scalar Curvature in Anti-Poisson Geometry

Varování

Publikace nespadá pod Filozofickou fakultu, ale pod Přírodovědeckou fakultu. Oficiální stránka publikace je na webu muni.cz.
Autoři

BATALIN Igor BERING LARSEN Klaus

Rok publikování 2008
Druh Článek v odborném periodiku
Časopis / Zdroj Physics Letters B
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
www http://arxiv.org/abs/0712.3699
Doi http://dx.doi.org/10.1016/j.physletb.2008.03.066
Obor Teoretická fyzika
Klíčová slova BV Field-Antifield Formalism; Odd Laplacian; Anti-Poisson Geometry;Semidensity; Connection; Odd Scalar Curvature.
Popis Recent works have revealed that the recipe for field-antifield quantization of Lagrangian gauge theories can be considerably relaxed when it comes to choosing a path integral measure \rho if a zero-order term \nu_{\rho} is added to the \Delta operator. The effects of this odd scalar term \nu_{\rho} become relevant at two-loop order. We prove that \nu_{\rho} is essentially the odd scalar curvature of an arbitrary torsion-free connection that is compatible with both the anti-Poisson structure E and the density \rho. This extends a previous result for non-degenerate antisymplectic manifolds to degenerate anti-Poisson manifolds that admit a compatible two-form.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.