Speeding Up Latent Semantic Analysis: A Streamed Distributed Algorithm for SVD Updates

Varování

Publikace nespadá pod Filozofickou fakultu, ale pod Fakultu informatiky. Oficiální stránka publikace je na webu muni.cz.
Autoři

ŘEHŮŘEK Radim

Rok publikování 2010
Druh Článek ve sborníku
Konference Proceedings of the 3rd International Conference on Agents and Artificial Intelligence (ICAART)
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
www http://www.icaart.org/Program_Saturday.htm
Obor Teorie informace
Klíčová slova svd lda lsi
Popis The purpose of Latent Semantic Analysis (LSA) is to find hidden (latent) structure in a collection of texts represented in the Vector Space Model. LSA was introduced in~\cite{deerwester1990indexing} and has since become a standard tool in the field of Natural Language Processing and Information Retrieval. At the heart of LSA lies the \emph{Singular Value Decomposition} algorithm, which makes LSA (sometimes also called Latent Semantic Indexing, or LSI) really just another member of the broad family of applications that make use of SVD's robust and mathematically well-founded approximation capabilities, from Image Processing; or Signal Processing, where SVD is commonly used to separate signal from noise. SVD is also used in solving shift-invariant differential equations, in Geophysics, in Antenna Array Processing, \ldots}. In this way, although we will discuss our results in the perspective and terminology of LSA and Natural Language Processing, our results are in fact applicable to a wide range of problems and domains across much of the field of Computer Science.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.