Faster algorithms for mean-payoff games

Logo poskytovatele

Varování

Publikace nespadá pod Filozofickou fakultu, ale pod Fakultu informatiky. Oficiální stránka publikace je na webu muni.cz.
Autoři

BRIM Luboš CHALOUPKA Jakub DOYEN Laurent GENTILINI Raffaella RASKIN Jean-François

Rok publikování 2011
Druh Článek v odborném periodiku
Časopis / Zdroj Formal Methods in System Design
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
Doi http://dx.doi.org/10.1007/s10703-010-0105-x
Obor Informatika
Klíčová slova Mean payoff objectives; Algorithms and complexity upper bounds
Popis In this paper, we study algorithmic problems for quantitative models that are motivated by the applications in modeling embedded systems. We consider two-player games played on a weighted graph with mean-payoff objective and with energy constraints. We present a new pseudopolynomial algorithm for solving such games, improving the best known worst-case complexity for pseudopolynomial mean-payoff algorithms. Our algorithm can also be combined with the procedure by Andersson and Vorobyov to obtain a randomized algorithm with currently the best expected time complexity. The proposed solution relies on a simple fixpoint iteration to solve the log-space equivalent problem of deciding the winner of energy games. Our results imply also that energy games and mean-payoff games can be reduced to safety games in pseudopolynomial time.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.