Considerable Sets of Linear Operators in Hilbert Spaces as Operator Generalized Effect Algebras

Varování

Publikace nespadá pod Filozofickou fakultu, ale pod Přírodovědeckou fakultu. Oficiální stránka publikace je na webu muni.cz.
Autoři

PASEKA Jan RIEČANOVÁ Zdenka

Rok publikování 2011
Druh Článek v odborném periodiku
Časopis / Zdroj Foundations of Physics
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
www http://www.springerlink.com/content/34h7p0018736878x/
Doi http://dx.doi.org/10.1007/s10701-011-9573-0
Obor Obecná matematika
Klíčová slova Quantum structures; (Generalized) effect algebra; Hilbert space; (Unbounded) positive linear operator; Closure; Adjoint; Friedrichs extension
Popis We show that considerable sets of positive linear operators namely their extensions as closures, adjoints or Friedrichs positive self-adjoint extensions form operator (generalized) effect algebras. Moreover, in these cases the partial effect algebraic operation of two operators coincides with usual sum of operators in complex Hilbert spaces whenever it is defined. These sets include also unbounded operators which play important role of observables (e.g., momentum and position) in the mathematical formulation of quantum mechanics.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.