Almost orthogonality and Hausdorff interval topologies of atomic lattice effect algebras

Logo poskytovatele

Varování

Publikace nespadá pod Filozofickou fakultu, ale pod Přírodovědeckou fakultu. Oficiální stránka publikace je na webu muni.cz.
Autoři

PASEKA Jan RIEČANOVÁ Zdenka JUNDE Wu

Rok publikování 2010
Druh Článek v odborném periodiku
Časopis / Zdroj Kybernetika : The Journal of the Czech Society for Cybernetics and Informatics
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
www Czech Digital Mathematics Library
Obor Obecná matematika
Klíčová slova non-classical logics; D-posets; effect algebras; MV-algebras; interval and order topology; states
Popis We prove that the interval topology of an Archimedean atomic lattice effect algebra E is Hausdorff whenever the set of all atoms of E is almost orthogonal. In such a case E is order continuous. If moreover E is complete then order convergence of nets of elements of E is topological and hence it coincides with convergence in the order topology and this topology is compact Hausdorff compatible with a uniformity induced by a separating function family on E corresponding to compact and cocompact elements. For block-finite Archimedean atomic lattice effect algebras the equivalence of almost orthogonality and s-compact generation is shown. As the main application we obtain a state smearing theorem for these effect algebras, as well as the continuity of circle plus-operation in the order and interval topologies on them.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.