Predicting drop-out from social behaviour of students

Varování

Publikace nespadá pod Filozofickou fakultu, ale pod Fakultu informatiky. Oficiální stránka publikace je na webu muni.cz.
Autoři

BAYER Jaroslav BYDŽOVSKÁ Hana GÉRYK Jan OBŠÍVAČ Tomáš POPELÍNSKÝ Lubomír

Rok publikování 2012
Druh Článek ve sborníku
Konference Proceedings of the 5th International Conference on Educational Data Mining - EDM 2012
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
Obor Informatika
Klíčová slova data mining; study-related data; social behaviour data; social network analysis
Popis This paper focuses on predicting drop-out and school failure when student data has been enriched with data derived from students social behaviour. These data describe social dependencies gathered from e-mail and discussion boards conversation, among other sources. We describe an extraction of new features from both student data and behaviour data (or more precisely from social graph which we construct). Then we introduce a novel method for learning classier for student failure prediction that employs cost-sensitive learning to lower the number of incorrectly classified unsuccessful students. We show that a use of social behaviour data results in significant prediction accuracy increase.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.