Genome-wide transcriptional analysis upon entomopathogenic nematode infection of Drosophila

Investor logo

Warning

This publication doesn't include Faculty of Arts. It includes Faculty of Science. Official publication website can be found on muni.cz.
Authors

KUČEROVÁ Lucie AREFIN Badrul DOBEŠ Pavel MARKUS Robert STRNAD Hynek WANG Zhi HYRŠL Pavel ŽUROVEC Michal THEOPOLD Ulrich

Year of publication 2013
Type Conference abstract
MU Faculty or unit

Faculty of Science

Citation
Description Entomopathogenic nematodes (EPN) Heterorhabditis bacteriophora are obligate and lethal insect parasites. These EPN are symbiotically associated with entomopathogenic bacteria Photorhabdus luminescens creating the highly pathogenic nematobacterial complex that is able to kill the host within 24 to 48 hours. H. bacteriophora with its bacterial symbionts are able to infect a broad spectrum of insect species. Symbiotic bacteria help to digest host tissues and provide nutrients for themselves and developing nematodes. Drosophila larvae are suitable insect hosts and part of the tripartite model system (Drosophila – EPN - bacteria). In this study we examined transcriptional changes in Drosophila upon nematode infection. We compare gene expression in non- infected and infected fly larvae. We focused on the early time point of nematode infection and therefore infected Drosophila larvae using H. bacteriophora harbouring GFP-labelled P. luminescens bacteria. Infected (GFP positive) larvae were collected 6 hours after infection. We found 642 genes significantly differentially regulated after nematobacterial infection caused by H. bacteriophora and P. luminescens. The majority of them are upregulated upon infection. The most strongly induced fraction comprise antimicrobial humoral response genes and defense response genes. However we observed also a lot of transcripts involved in development, morphogenesis and cell differentiation. Based on Gene Ontology annotation we identified several pathways, which could be involved in sealing and repairing the wound caused by invading nematodes. We compared our results with the available data for other infection types caused by bacteria (both nonpathogenic and pathogenic) and parasitic wasps. A core set of 17 genes was common for all types of infection and approximately 10-25% of genes were overlapping in each pairwise comparison.
Related projects:

You are running an old browser version. We recommend updating your browser to its latest version.