Factors affecting the Nd3+ (REE3+) luminescence of minerals

Investor logo

Warning

This publication doesn't include Faculty of Arts. It includes Faculty of Science. Official publication website can be found on muni.cz.
Authors

LENZ Christoph TALLA Dominik RUSCHEL Katja ŠKODA Radek GOETZE Jens NASDALA Lutz

Year of publication 2013
Type Article in Periodical
Magazine / Source Mineralogy and Petrology
MU Faculty or unit

Faculty of Science

Citation
Doi http://dx.doi.org/10.1007/s00710-013-0286-2
Field Geology and mineralogy
Keywords RARE-EARTH ELEMENTS; SITE-SELECTIVE SPECTROSCOPY; RESOLUTION SPECTROMETRIC ANALYSIS; BACKSCATTERED ELECTRON IMAGES; CATHODOLUMINESCENCE CL; ACTIVATED CATHODOLUMINESCENCE; CRYSTAL-CHEMISTRY; HIGH-TEMPERATURE; SOLID-SOLUTIONS; MONAZITE
Description In this paper, possibilities and limits of the application of REE3+ luminescence (especially the Nd3+ F-4(3/2) -> I-4(9/2) emission) as structural probe are evaluated. Important factors controlling the Nd3+ luminescence signal are discussed, including effects of the crystal-field, crystal orientation, structural state, and temperature. Particular attention was paid to the study of the accessory minerals zircon (ZrSiO4), xenotime-(Y) (YPO4),monazite-(Ce)(CePO4) and their synthetic analogues. Based on these examples we review in short that (1) REE3+ luminescence can be used as non-destructive phase identification method, (2) the intensities of certain luminescence bands are strongly influenced by crystal orientation effects, and (3) increased widths of REE3+-related emission bands are a strong indicator for structural disorder. We discuss the potential of luminescence spectroscopy, complementary to Raman spectroscopy, for the quantitative estimation of chemical (and potentially also radiation-induced) disorder. For the latter, emissions of Nd3+-related centres are found to be promising candidates.
Related projects:

You are running an old browser version. We recommend updating your browser to its latest version.