Stepwise Catalytic Mechanism via Short-Lived Intermediate Inferred from Combined QM/MM MERP and PES Calculations on Retaining Glycosyltransferase ppGalNAcT2

Investor logo
Investor logo

Warning

This publication doesn't include Faculty of Arts. It includes Faculty of Science. Official publication website can be found on muni.cz.
Authors

TRNKA Tomáš KOZMON Stanislav TVAROŠKA Igor KOČA Jaroslav

Year of publication 2015
Type Article in Periodical
Magazine / Source PLoS Computational Biology
MU Faculty or unit

Faculty of Science

Citation
Web http://www.ploscompbiol.org/article/fetchObject.action?uri=info:doi/10.1371/journal.pcbi.1004061&representation=PDF
Doi http://dx.doi.org/10.1371/journal.pcbi.1004061
Field Biochemistry
Keywords POLYPEPTIDE N-ACETYLGALACTOSAMINYLTRANSFERASE; ENZYMATIC GLYCOSYL TRANSFER; ACETYL-D-GALACTOSAMINE; UDP-GALNAC; GALACTOSYLTRANSFERASE LGTC; DENSITY FUNCTIONALS; INTEGRATION SCHEME; CORRELATION-ENERGY; TRANSITION-STATE; LECTIN DOMAIN
Attached files
Description The glycosylation of cell surface proteins plays a crucial role in a multitude of biological processes, such as cell adhesion and recognition. To understand the process of protein glycosylation, the reaction mechanisms of the participating enzymes need to be known. However, the reaction mechanism of retaining glycosyltransferases has not yet been sufficiently explained. Here we investigated the catalytic mechanism of human isoform 2 of the retaining glycosyltransferase polypeptide UDP-GalNAc transferase by coupling two different QM/MM-based approaches, namely a potential energy surface scan in two distance difference dimensions and a minimum energy reaction path optimisation using the Nudged Elastic Band method. Potential energy scan studies often suffer from inadequate sampling of reactive processes due to a predefined scan coordinate system. At the same time, path optimisation methods enable the sampling of a virtually unlimited number of dimensions, but their results cannot be unambiguously interpreted without knowledge of the potential energy surface. By combining these methods, we have been able to eliminate the most significant sources of potential errors inherent to each of these approaches. The structural model is based on the crystal structure of human isoform 2. In the QM/MM method, the QM region consists of 275 atoms, the remaining 5776 atoms were in the MM region. We found that ppGalNAcT2 catalyzes a same-face nucleophilic substitution with internal return (SNi). The optimized transition state for the reaction is 13.8 kcal/mol higher in energy than the reactant while the energy of the product complex is 6.7 kcal/mol lower. During the process of nucleophilic attack, a proton is synchronously transferred to the leaving phosphate. The presence of a short-lived metastable oxocarbenium intermediate is likely, as indicated by the reaction energy profiles obtained using high-level density functionals.
Related projects:

You are running an old browser version. We recommend updating your browser to its latest version.