Exponential estimates for solutions of half-linear differential equations

Investor logo

Warning

This publication doesn't include Faculty of Arts. It includes Faculty of Education. Official publication website can be found on muni.cz.
Authors

ŘEHÁK Pavel

Year of publication 2015
Type Article in Periodical
Magazine / Source Acta Mathematica Hungarica
MU Faculty or unit

Faculty of Education

Citation
Web http://link.springer.com/article/10.1007/s10474-015-0522-9
Doi http://dx.doi.org/10.1007/s10474-015-0522-9
Field General mathematics
Keywords half-linear differential equation; decreasing solution; increasing solution; asymptotic behavior
Description This paper is concerned with estimates, unimprovable in a certain sense, for positive solutions to the half-linear differential equation $ (|y'|^{\alpha-1}\operatorname{\text{\rm sgn}} y')'=p(t)|y|^{\alpha-1}\operatorname{\text{\rm sgn}} y, $ where $p$ is a continuous nonnegative function on $[0,\infty)$ and $\alpha>1$. It is shown that any positive increasing solution $y$ of the equation satisfies $y(t)\ge y(0)\exp\left\{h\int_0^t p^{\frac{1}{\alpha}}(s)\,\drm s\right\}$, with $h<(\alpha-1)^{-\frac{1}{\alpha}}$, for all $t$ on the complement of a set of finite Lebesgue measure. Under an additional assumption, this estimate holds for all $t$. Further, a condition is established which guarantees that the equation has exponentially increasing solutions and exponentially decreasing solutions.
Related projects:

You are running an old browser version. We recommend updating your browser to its latest version.