Cross-correlation spectroscopy study of the Transient Spark discharge in atmospheric pressure air
Authors | |
---|---|
Year of publication | 2017 |
Type | Article in Periodical |
Magazine / Source | Plasma Sources Science and Technology |
MU Faculty or unit | |
Citation | |
Web | http://iopscience.iop.org/article/10.1088/1361-6595/aa642a |
Doi | http://dx.doi.org/10.1088/1361-6595/aa642a |
Field | Plasma physics |
Keywords | cross-correlation spectroscopy; transient spark; streamer-to-spark breakdown mechanism; atmospheric air discharge |
Description | A streamer-to-spark transition in a self-pulsing transient spark (TS) discharge of positive polarity in air was investigated using cross-correlation spectroscopy. The entire temporal evolution of the TS was recorded for several spectral bands and lines: the second positive system of N2 (337.1 nm), the first negative system of N2+ (391.4 nm), and atomic oxygen (777.1 nm). The results enable the visualization of the different phases of discharge development including the primary streamer, the secondary streamer, and the transition to the spark. The spatio-temporal distribution of the reduced electric field strength during the primary streamer phase of the TS was determined and discussed. The transition from the streamer to the spark proceeds very fast within about 10 ns for the TS with a current pulse repetition rate in the range 8-10 kHz. This is attributed to memory effects, leading to a low net electron attachment rate and faster propagation of the secondary streamer. Gas heating, accumulation of species such as oxygen atoms from the previous TS pulses, as well as generation of charged particles by stepwise ionization seem to play important roles contributing to this fast streamer-to-spark transition. |
Related projects: |