BEN3/BIG2 ARF GEF is Involved in Brefeldin A-Sensitive Trafficking at the trans-Golgi Network/Early Endosome in Arabidopsis thaliana
Authors | |
---|---|
Year of publication | 2017 |
Type | Article in Periodical |
Magazine / Source | Plant and Cell Physiology |
MU Faculty or unit | |
Citation | |
web | https://academic.oup.com/pcp/article-abstract/58/10/1801/4086060?redirectedFrom=fulltext |
Doi | http://dx.doi.org/10.1093/pcp/pcx118 |
Keywords | Arabidopsis; ARF GEF; Auxin; Brefeldin A; PIN-FORMED1; trans-Golgi network |
Description | Membrane traffic at the trans-Golgi network (TGN) is crucial for correctly distributing various membrane proteins to their destination. Polarly localized auxin efflux proteins, including PIN-FORMED1 (PIN1), are dynamically transported between the endosomes and the plasma membrane (PM) in the plant cells. The intracellular trafficking of PIN1 protein is sensitive to the fungal toxin brefeldin A (BFA), which is known to inhibit guanine nucleotide exchange factors for ADP ribosylation factors (ARF GEFs) such as GNOM. However, the molecular details of the BFA-sensitive trafficking pathway have not been fully revealed. In a previous study, we identified an Arabidopsis mutant BFA-visualized endocytic trafficking defective 3 (ben3) which exhibited reduced sensitivity to BFA in terms of BFA-induced intracellular PIN1 agglomeration. Here, we show that BEN3 encodes a member of BIG family ARF GEFs, BIG2. BEN3/BIG2 tagged with fluorescent proteins co-localized with markers for the TGN/early endosome (EE). Inspection of conditionally induced de novo synthesized PIN1 confirmed that its secretion to the PM is BFA sensitive, and established BEN3/BIG2 as a crucial component of this BFA action at the level of the TGN/EE. Furthermore, ben3 mutation alleviated BFA-induced agglomeration of another TGN-localized ARF GEF, BEN1/MIN7. Taken together, our results suggest that BEN3/BIG2 is an ARF GEF component, which confers BFA sensitivity to the TGN/EE in Arabidopsis. |
Related projects: |