Bifurcation manifolds in predator–prey models computed by Gröbner basis method

Warning

This publication doesn't include Faculty of Arts. It includes Faculty of Science. Official publication website can be found on muni.cz.
Authors

HAJNOVÁ Veronika PŘIBYLOVÁ Lenka

Year of publication 2019
Type Article in Periodical
Magazine / Source Mathematical Biosciences
MU Faculty or unit

Faculty of Science

Citation
Web Full Text
Doi http://dx.doi.org/10.1016/j.mbs.2019.03.008
Keywords Rosenzweig–MacArthur model; Bifurcation manifolds; Gröbner basis; Hopf bifurcation; Fold bifurcation; Predator–prey model
Description Many natural processes studied in population biology, systems biology, biochemistry, chemistry or physics are modeled by dynamical systems with polynomial or rational right-hand sides in state and parameter variables. The problem of finding bifurcation manifolds of such discrete or continuous dynamical systems leads to a problem of finding solutions to a system of non-linear algebraic equations. This approach often fails since it is not possible to express equilibria explicitly. Here we describe an algebraic procedure based on the Gröbner basis computation that finds bifurcation manifolds without computing equilibria. Our method provides formulas for bifurcation manifolds in commonly studied cases in applied research – for the fold, transcritical, cusp, Hopf and Bogdanov–Takens bifurcations. The method returns bifurcation manifolds as implicitly defined functions or parametric functions in full parameter space. The approach can be implemented in any computer algebra system; therefore it can be used in applied research as a supporting autonomous computation even by non-experts in bifurcation theory. This paper demonstrates our new approach on the recently published Rosenzweig–MacArthur predator–prey model generalizations in order to highlight the simplicity of our method compared to the published analysis.
Related projects:

You are running an old browser version. We recommend updating your browser to its latest version.