The role of RNA adenosine demethylases in the control of gene expression

Investor logo

Warning

This publication doesn't include Faculty of Arts. It includes Central European Institute of Technology. Official publication website can be found on muni.cz.
Authors

RÁJECKÁ Veronika SKALICKÝ Tomáš VAŇÁČOVÁ Štěpánka

Year of publication 2019
Type Article in Periodical
Magazine / Source Biochimica et biophysica acta - Gene regulatory mechanisms
MU Faculty or unit

Central European Institute of Technology

Citation
web https://www.sciencedirect.com/science/article/pii/S1874939918300439?via%3Dihub
Doi http://dx.doi.org/10.1016/j.bbagrm.2018.12.001
Keywords m(6)A; m(6)A(m); RNA demethylase; FTO; ALKBH5; RNA modification
Description RNA modifications are being recognized as an essential factor in gene expression regulation. They play essential roles in germ line development, differentiation and disease. In eukaryotic mRNAs, N-6-adenosine methylation (m(6)A) is the most prevalent internal chemical modification identified to date. The m(6)A pathway involves factors called writers, readers and erasers. m(6)A thus offers an interesting concept of dynamic reversible modification with implications in fine-tuning the cellular metabolism. In mammals, FTO and ALKBH5 have been initially identified as m(6)A erasers. Recently, FTO m(6)A specificity has been debated as new reports identify FTO targeting N-6,2'-O-dimethyladenosine (m(6)A(m)). The two adenosine demethylases have diverse roles in the metabolism of mRNAs and their activity is involved in key processes, such as embryogenesis, disease or infection. In this article, we review the current knowledge of their function and mechanisms and discuss the existing contradictions in the field. This article is part of a Special Issue entitled: mRNA modifications in gene expression control edited by Dr. Soller Matthias and Dr. Fray Rupert.
Related projects:

You are running an old browser version. We recommend updating your browser to its latest version.