Novel synergistic culturing approach for efficient and robust differentiation of human pluripotent stem cells into endothelial progenitors.
Authors | |
---|---|
Year of publication | 2019 |
Type | Conference abstract |
MU Faculty or unit | |
Citation | |
Description | Cellular therapy is a powerful tool for treating various human diseases and reparation of the damaged vasculature is a specialized subtype of this therapy. Using human pluripotent stem cells (hPSCs) as a starting material, it should be possible to generate high amounts of endothelial progenitor cells (EPCs). Our aim was to develop highly efficient, robust and easily reproducible differentiation protocol that would allow us to produce these high amounts of EPCs. Presented protocol follows proper physiological pathway by differentiating hPSCs in three phases through primitive streak and kinase insert domain receptor (KDR) positive mesoderm into EPCs. The differentiation protocol only takes 5 days and results in high amounts of pure EPCs. The robustness is demonstrated by using both human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs). Better efficiency and lesser line-to-line variability were observed for our differentiation protocol in comparison to other published protocols. Furthermore, derived EPCs expressed high proliferative potential EPC marker CD157 on their surface in addition to standard EPC markers CD31, CD144, CD34, KDR and C-X-C chemokine receptor type 4 (CXCR4). |
Related projects: |