Investigation of the impact of supplemental reflective films to improve micro-light climate within tomato plant canopy in solar greenhouses

Investor logo

Warning

This publication doesn't include Faculty of Arts. It includes Central European Institute of Technology. Official publication website can be found on muni.cz.
Authors

LIU Anhua HENKE Michael LI Yiming ZHANG Yue XU Demin LIU Xingan LI Tianlai

Year of publication 2022
Type Article in Periodical
Magazine / Source Frontiers in Plant Science
MU Faculty or unit

Central European Institute of Technology

Citation
Web odkaz na webovou stránku
Doi http://dx.doi.org/10.3389/fpls.2022.966596
Keywords in-silico light simulation; passive light supplement; micro-light climate; reflective film; GroIMP
Description The non-uniform growth and development of crops within Chinese Solar Greenhouses (CSG) is directly related to the micro-light climate within canopy. In practice, reflective films are used to improve micro-light climate within plant canopy by homogenizing light distribution and so increasing total plant light interception. However, as to our knowledge, the contributions to light distribution within canopy have not been investigated for passive reflector like reflective films. Field experiments dealing with light conditions and growth behavior over time, are complicated to carry out, time-consuming and hard to control, while however, accurate measurements of how reflective films influence the micro-light climate of canopy are an essential step to improve the growth conditions for any crop. Here, we propose a supplementary light strategy using reflective films to improve light distribution within plant canopy. Based on the example of CSG, a 3D greenhouse model including a detailed 3D tomato canopy structure was constructed to simulate the influence of supplementary reflective films to improve micro-light climate. Comparison of measured solar radiation intensity with predicted model data demonstrated that the model could precisely predict light radiation intensity over time with different time points and positions in the greenhouse. A series of reflective film configurations were investigated based on features analysis of light distribution in the tomato canopy on sunny days using the proposed model. The reflective film configuration scheme with the highest impact significantly improved the evenness of horizontal and vertical light distribution in tomato canopy. The strategy provided here can be used to configure reflective films that will enhance light conditions in CSG, which can be applied and extended in different scenarios.
Related projects:

You are running an old browser version. We recommend updating your browser to its latest version.