The pathways of whole-genome duplications, diploidization, and descending dysploidy in the Biscutelleae (Brassicaceae)

Authors

HUANG Yile ANANI Hussein MALÍK MANDÁKOVÁ Terezie GUO Xinyi PORETTI Manuel PARISOD Christian LYSÁK Martin

Year of publication 2023
Type Conference abstract
Citation
Description In plants, whole-genome duplications (WGDs) are often characterized by genome-wide diploidization including descending dysploidy, i.e., chromosomal rearrangements that reduce chromosome number and genome size. However, the genomic basis and evolutionary significance of chromosomal restructuring remain poorly understood. Phylogenetic and comparative genomic analyses revealed that the Biscutelleae consist of one diploid (Megadenia), one neotetraploid (Heldreichia), and three mesotetraploid (Biscutella, Lunaria, and Ricotia) genera, with the ancestral tetraploid genomes arising from independent WGD events involving closely related diploid genomes. Here, we sequenced, analyzed and compared genomes of four Biscutella species (Buckler Mustards) differing by genome sizes (0.7 to 1.1 Gbp) and chromosome numbers (n = 6 and 8). Genome sequence data with long-range scaffolding combined with molecular cytogenetics provided accurate assemblies and annotations at the chromosome level. Highly reshuffled Biscutella genomes have descended from two ancPCK-like ancestral genomes via allopolyploidy followed by extensive descending dysploidy (n = 16 › n = 6 and 8). Such genome restructuring mediating descending dysploidies and speciation appeared to be predominantly non-random, with large chromosomal segments conserved as duplicates, while others exhibited considerable turnover. Our results provide new insights into the role of dysploid changes in plant genome evolution, speciation, and diversification.
Related projects:

You are running an old browser version. We recommend updating your browser to its latest version.