Membrane adsorption enhances translocation of antimicrobial peptide buforin 2

Investor logo

Warning

This publication doesn't include Faculty of Arts. It includes Central European Institute of Technology. Official publication website can be found on muni.cz.
Authors

KHODAM HAZRATI Mehrnoosh VÁCHA Robert

Year of publication 2023
Type Conference abstract
MU Faculty or unit

Central European Institute of Technology

Citation
Attached files
Description Antibiotic resistance has been identified as one of the top three threats to human public health. Promising alternatives to antibiotics are antimicrobial peptides (AMPs) that can selectively kill bacterial cells. Buforin 2 (BF2) is an AMP that kills bacteria via intracellular interactions rather than membrane lysis. BF2 membrane translocation is known to be independent of any cellular receptor because BF2 can readily enter bacterial cells and vesicles that contain only lipids in their membrane. However, the free energy barrier for BF2 translocation across a symmetric membrane suggests a non-spontaneous process, demonstrating our poor understanding of the molecular details of how BF2 crosses biological membranes. Here, we show that inducing membrane asymmetry by BF2 adsorption on one leaflet significantly enhances BF2 translocation across bilayers, indicating that membrane asymmetry may act as a driving force for membrane transport. Our results shed light on the crowding effect of AMP on antibacterial activity and are expected to be helpful in the design of new AMPs.
Related projects:

You are running an old browser version. We recommend updating your browser to its latest version.