Haloalkane dehalogenase LinB from Sphingomonas paucimobilis UT26: X-ray crystallographic studies of dehalogenation of brominated substrates

Warning

This publication doesn't include Faculty of Arts. It includes Faculty of Science. Official publication website can be found on muni.cz.
Authors

STRELTSOV Victor PROKOP Zbyněk DAMBORSKÝ Jiří NAGATA Yuji OAKLEY Aaron WILCE Matthew C.J.

Year of publication 2003
Type Article in Periodical
Magazine / Source Biochemistry
MU Faculty or unit

Faculty of Science

Citation
Web http://ncbr.chemi.muni.cz/~jiri/abstracts/biochem03a.html
Field Biochemistry
Keywords DEHALOGENASE X-RAY GC-MS
Description The haloalkane dehalogenases are detoxifying enzymes that convert a broad range of halogenated substrates to the corresponding alcohols. Complete crystal structures of haloalkane dehalogenase from Sphingomonas paucimobilis UT26 (LinB), and complexes of LinB with 1,2-propanediol/1-bromopropane-2-ol and 2-bromo-2-propene-1-ol, products of debromination of 1,2-dibromopropane and 2,3-dibromopropene, respectively, were determined from 1.8 A resolution X-ray diffraction data. Published structures of native LinB and its complex with 1,3-propanediol [Marek et al. (2000) Biochemistry 39, 14082-14086] were re-examined. The full and partial debromination of 1,2-dibromopropane and 2,3-dibromopropene, respectively, conformed to the observed general trend that the sp3-hybridized carbon is the predominant electrophilic site for the SN2 bimolecular nucleophilic substitution in dehalogenation reaction. The 2-bromo-2-propene-1-ol product of 2,3-dibromopropene dehalogenation in crystal was positively identified by the gas chromatography-mass spectroscopy (GC-MS) technique. The 1,2-propanediol and 1-bromopropane-2-ol products of 1,2-dibromopropane dehalogenation in crystal were also supported by the GC-MS identification. Comparison of native LinB with its complexes showed high flexibility of residues 136-157, in particular Asp146 and Glu147 from the cap domain helices a4 and a5'. Those residues were shifted mainly in direction towards the ligand molecules in the complex structures. It seems the cap domain moves nearer to the core squeezing substrate into the active center closer to the catalytic triad. This also leads to slight contraction of the whole complex structures. The flexibility detected by crystallographic analysis is in remarkable agreement with flexibility observed by molecular dynamic simulations.
Related projects:

You are running an old browser version. We recommend updating your browser to its latest version.