Photosynthetic characteristics of foliose lichens in response to light, temperature and water status of thallus

Investor logo

Warning

This publication doesn't include Faculty of Arts. It includes Faculty of Science. Official publication website can be found on muni.cz.
Authors

BARTÁK Miloš GLOSER Jan HÁJEK Josef DUBOVÁ Jaroslava VRÁBLÍKOVÁ Hana VÁCZI Peter KOMÁREK Ondřej HÁJKOVÁ Martina

Year of publication 2004
Type Article in Proceedings
Conference Book of Abstracts. 5th IAL Symposium
MU Faculty or unit

Faculty of Science

Citation
Field Botany
Keywords lichen; chlorophyll fluorescence imaging; stress physiology
Description Introduction Majority of lichens are capable to cope with extremes and rapid fluctuations in environmental factors, availability of water, light, and air temperature in particular. Photosynthesis in lichens is controlled by these factors and actual rate of photosynthetic processes reflects their interactive effect. Material and Methods To study lichen photosynthesis both in situ (mainly maritime Antarctica) and in a laboratory, fluorometric and gas exchange methods were used. In addition, spectral reflectance, photosynthetic pigments and antioxidants analyses, oxymetric evaluation of photosynthesis in photobionts, anatomic studies were applied in Lasallia pustulata, Umbilicaria hirsuta, U. antarctica, and U.decussata. Results and discussion Temperature response curves revealed that primary processes of photosynthesis (Fv/Fm - capacity of photochemical reactions in photosystem II, FII - quantum yield of PS II) had optimum at 18-22 oC, and hold high level (about 80 % of maximum) within the range of -5 to 18 oC. Temperature minimum was found at -20 to -15 oC. Hydration response curves showed that maximum values of Fv/Fm, FII retained to water saturation deficit (WSD) of 50-60 % and then decreased rapidly with desiccation. In most species, critical WSD was 70-80 % which corresponds to water potential (WP) of - 35 to -25 MPa. In situ measurements of net photosynthesis (Pn) showed Pn of 1-2 mmol (CO2) m-2 s-1 for well-hydrated U.antarctica. When exposed to high light in wet state in a laboratory, thalli showed decrease in Fv/Fm, FII and consequent recovery in dark. Chlorophyll fluorescence imaging showed intrathalline differences in the sensitivity of U. antarctica to photoinhibition. During photoinhibion, non-photochemical quenching (NPQ) and zeaxanthin formation increased simultaneously. Photosynthetic processes (FII)were linearly related to oxygen evolution rate in non-stressed symbiotic algae. Under osmotic stress, however, FII to OEC relation was curvilinear.
Related projects:

You are running an old browser version. We recommend updating your browser to its latest version.