Changes of intraneuronal immunostaining for chondroitin sulphate proteoglycans in the bodies of primary afferent neurons following constriction nerve injury

Investor logo

Warning

This publication doesn't include Faculty of Arts. It includes Faculty of Medicine. Official publication website can be found on muni.cz.
Authors

MARTEČÍKOVÁ Soňa DUBOVÝ Petr

Year of publication 2005
Type Article in Proceedings
Conference Progress in Basic, Applied and Diagnostic Histochemistry
MU Faculty or unit

Faculty of Medicine

Citation
Field Neurology, neurosurgery, neurosciences
Keywords extracellular matrix; inhibitory of axon growth
Description Chronic constriction injury is one of the most used experimental models for study of neuropathic pain. The sciatic nerve constriction injury is a partial nerve injury model based on both axotomized and spared neurons. The extracellular matrix molecules have a variety of roles in the nervous system. Chondroitin sulphate proteoglycans (CSPGs) are the most abundant type of proteoglycans in the nervous system that act mainly as barrier forming molecules and belong to major inhibitory regulators of axonal regeneration. Monoclonal antibody CS-56 recognizes both the 4- and 6-sulphated forms of CSPG. The aim of the present study was to investigate an immunofluorescence for CS-56 in the dorsal root ganglion (DRG) neurons of intact rats as well as DRG after constriction of sciatic nerve for 14 and 28 days. The immunostained sections were analyzed by an epifluorescence microscope (Leica DMLB) using a software Lucia to measure intensity (brightness) of immunofluorescence and the size of neuronal bodies. Besides immunostaining in the extracellular matrix of DRG, CS-56 immunofluorescence of different intensities was detected in the bodies of DRG neurons of all size-types. The bodies of largest DRG neurons exhibited higher immunofluorescence intensity than was found in the medium- or small-sized neurons. Significantly increased intensity of immunofluorescence was found only in the medium-sized neurons of ipsilateral DRG 28 days after constriction injury when compared with DRG of naive rats or 14 days after operation. No significant difference of immunofluorescence intensity was measured in the contralateral DRG when compared with those of naive rats or operated side. In conclusion, sciatic nerve constriction used as an experimental model of neuropathic pain stimulated increased immunofluorescence for CS-56 only in the medium-sized neuron bodies. The studies of mechanisms related with elevated CS-56 immunofluorescence in the medium-sized neuronal bodies after sciatic nerve constriction are in progress.
Related projects:

You are running an old browser version. We recommend updating your browser to its latest version.