Improved statistical edge detection through neural networks
Authors | |
---|---|
Year of publication | 2006 |
Type | Article in Proceedings |
Conference | 10th Conference on Medical Image Understanding and Analysis |
MU Faculty or unit | |
Citation | |
Web | http://www2.wiau.man.ac.uk/miua2006/ |
Field | Use of computers, robotics and its application |
Keywords | edge detection; neural networks; statistical tests |
Description | The paper details a novel and successful method for multi-statistic edge detection. The detector works by analyzing the texture properties of different regions within an image, and through the use of neural networks classifying the location and direction of any edges. The detailed technique is illustrated for use both on Histological Mouse Embryo Atlas (MA) images, and also real image data. The overall accuracy of this novel technique is extensively tested using a novel grey-scale performance measure (GFOM) which allows a robustness in the results unavailable with visual inspection alone. The filter is illustrated to outperform the traditional Canny edge detector which is seen as the benchmark for edge detection. The technique presented within the paper can be applied to a variety of low level medical imaging applications and is particularly suited to images containing high levels of noise and texture where the traditional methods of edge detection prove less successful. |
Related projects: |