Semantically Consistent Human Motion Segmentation

Logo poskytovatele

Varování

Publikace nespadá pod Filozofickou fakultu, ale pod Fakultu informatiky. Oficiální stránka publikace je na webu muni.cz.
Autoři

BALÁŽIA Michal SEDMIDUBSKÝ Jan ZEZULA Pavel

Rok publikování 2014
Druh Článek ve sborníku
Konference Proceedings of 25th International Conference on Database and Expert Systems Applications (DEXA 2014)
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
Doi http://dx.doi.org/10.1007/978-3-319-10073-9_36
Obor Informatika
Klíčová slova motion capture data; segmentation; semantic consistency; phases of movement; motion retrieval
Popis The development of motion capturing devices like Microsoft Kinect poses new challenges in the exploitation of human-motion data for various application fields, such as computer animation, visual surveillance, sports or physical medicine. In such applications, motion segmentation is recognized as one of the most fundamental steps. Existing methods usually segment motions at the level of logical actions, like walking or jumping, to annotate the motion segments by textual descriptions. Although the action-level segmentation is convenient for motion summarization and action retrieval, it does not suit for general action-independent motion retrieval. In this paper, we introduce a novel semantically consistent algorithm for partitioning motions into short and further non-divisible segments. The property of semantic consistency ensures that the start and end of each segment are detected at semantically equivalent phases of movement to support general motion retrieval. The proposed segmentation algorithm first extracts relative distances between particular body parts as motion features. Based on these features, segments are consequently identified by constructing and analyzing a one-dimensional energy curve representing local motion changes. Experiments conducted on real-life motions demonstrate that the algorithm outperforms other relevant approaches in terms of recall and precision with respect to a user-defined ground truth. Moreover, it identifies segments at semantically equivalent phases with the highest accuracy.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.