WalDis: Mining Discriminative Patterns within Dynamic Graphs

Varování

Publikace nespadá pod Filozofickou fakultu, ale pod Fakultu informatiky. Oficiální stránka publikace je na webu muni.cz.
Autoři

VACULÍK Karel POPELÍNSKÝ Lubomír

Rok publikování 2018
Druh Článek ve sborníku
Konference IDEAS '18 Proceedings of the 22nd International Database Engineering & Applications Symposium
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
www https://dl.acm.org/citation.cfm?id=3216172
Doi http://dx.doi.org/10.1145/3216122.3216172
Klíčová slova data mining;discriminative patterns;dynamic graphs;graph mining;pattern mining;random walk
Popis Real-world networks typically evolve through time, which means there are various events occurring, such as edge additions or attribute changes. In order to understand the events, one must be able to discriminate between different events. Existing approaches typically discriminate whole graphs, which are, in addition, mostly static. We propose a new algorithm WalDis for mining discriminate patterns of events in dynamic graphs. This algorithm uses sampling by random walks and greedy approaches in order to keep the performance high. Furthermore, it does not require the time to be discretized as other algorithms commonly do. We have evaluated the algorithm on three real-world graph datasets.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.