Implementation Notes for the Soft Cosine Measure

Logo poskytovatele

Varování

Publikace nespadá pod Filozofickou fakultu, ale pod Fakultu informatiky. Oficiální stránka publikace je na webu muni.cz.
Autoři

NOVOTNÝ Vít

Rok publikování 2018
Druh Článek ve sborníku
Konference Proceedings of the 27th ACM International Conference on Information and Knowledge Management (CIKM '18)
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
www
Doi http://dx.doi.org/10.1145/3269206.3269317
Klíčová slova Vector Space Model; computational complexity; similarity measure
Přiložené soubory
Popis The standard bag-of-words vector space model (VSM) is efficient, and ubiquitous in information retrieval, but it underestimates the similarity of documents with the same meaning, but different terminology. To overcome this limitation, Sidorov et al. proposed the Soft Cosine Measure (SCM) that incorporates term similarity relations. Charlet and Damnati showed that the SCM is highly effective in question answering (QA) systems. However, the orthonormalization algorithm proposed by Sidorov et al. has an impractical time complexity of O(n^4), where n is the size of the vocabulary. In this paper, we prove a tighter lower worst-case time complexity bound of O(n^3). We also present an algorithm for computing the similarity between documents and we show that its worst-case time complexity is O(1) given realistic conditions. Lastly, we describe implementation in general-purpose vector databases such as Annoy, and Faiss and in the inverted indices of text search engines such as Apache Lucene, and ElasticSearch. Our results enable the deployment of the SCM in real-world information retrieval systems.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.