Molecular Gating of an Engineered Enzyme Captured in Real Time

Logo poskytovatele
Logo poskytovatele
Logo poskytovatele

Varování

Publikace nespadá pod Filozofickou fakultu, ale pod Přírodovědeckou fakultu. Oficiální stránka publikace je na webu muni.cz.
Autoři

KOKKONEN Piia Pauliina SYKORA J. PROKOP Zbyněk GHOSE A. BEDNÁŘ David AMARO M. BEERENS Koen NEVOLOVÁ Šárka SLÁNSKÁ Michaela BREZOVSKÝ Jan DAMBORSKÝ Jiří HOF M.

Rok publikování 2018
Druh Článek v odborném periodiku
Časopis / Zdroj Journal of the American Chemical Society
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
www https://loschmidt.chemi.muni.cz/peg/category/publications/#2018
Doi http://dx.doi.org/10.1021/jacs.8b09848
Klíčová slova PHOTOINDUCED ELECTRON-TRANSFER; CONFORMATIONAL DYNAMICS; CATALYTIC MECHANISM; PROTEIN DYNAMICS; NUCLEIC-ACIDS; ACTIVE-SITE; FORCE-FIELD; EVOLUTION; MOTIONS; SIMULATION
Popis Enzyme engineering tends to focus on the design of active sites for the chemical steps, while the physical steps of the catalytic cycle are often overlooked. Tight binding of a substrate in an active site is beneficial for the chemical steps, whereas good accessibility benefits substrate binding and product release. Many enzymes control the accessibility of their active sites by molecular gates. Here we analyzed the dynamics of a molecular gate artificially introduced into an access tunnel of the most efficient haloalkane dehalogenase using pre-steady-state kinetics, single-molecule fluorescence spectroscopy, and molecular dynamics. Photoinduced electron-transfer fluorescence correlation spectroscopy (PET-FCS) has enabled real-time observation of molecular gating at the single-molecule level with rate constants (k(on) = 1822 s(-1), k(off) = 60 s(-1)) corresponding well with those from the pre-steady-state kinetics (k(-1) = 1100 s(-1), k(1) = 20 s(-1)). The PET-FCS technique is used here to study the conformational dynamics in a soluble enzyme, thus demonstrating an additional application for this method. Engineering dynamical molecular gates represents a widely applicable strategy for designing efficient biocatalysts.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.