Range assignment of base-stations maximizing coverage area without interference

Logo poskytovatele

Varování

Publikace nespadá pod Filozofickou fakultu, ale pod Fakultu informatiky. Oficiální stránka publikace je na webu muni.cz.
Autoři

ACHARYYA Ankush DE Minati NANDY Subhas Chandra ROY Bodhayan

Rok publikování 2020
Druh Článek v odborném periodiku
Časopis / Zdroj Theoretical Computer Science
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
www
Doi http://dx.doi.org/10.1016/j.tcs.2019.10.044
Klíčová slova Quadratic programming; Discrete packing; Range assignment in wireless communication; NP-hardness; Approximation algorithm; PTAS
Popis We study the problem of assigning non-overlapping geometric objects centered at a given set of points such that the sum of area covered by them is maximized. The problem remains open since 2002, as mentioned in a lecture slide of David Eppstein. In this paper, we have performed an exhaustive study on the problem. We show that, if the points are placed in R-2 then the problem is NP-hard even for simplest type of covering objects like disks or squares. In contrast, Eppstein (2017) [10] proposed a polynomial time algorithm for maximizing the sum of radii (or perimeter) of non-overlapping disks when the points are arbitrarily placed in R-2. We show that Eppstein's algorithm for maximizing sum of perimeter of the disks in R-2 gives a 2-approximation solution for the sum of area maximization problem. We also propose a PTAS for the same problem. Our results can be extended in higher dimensions as well as for a class of centrally symmetric convex objects.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.