Synthetic Data as a Tool to Combat Racial Bias in Medical AI: Utilizing Generative Models for Optimizing Early Detection of Melanoma in Fitzpatrick Skin Types IV–VI

Autoři

KVAK Daniel BŘEZINOVÁ Eva BIROŠ Marek HRUBÝ Robert

Rok publikování 2023
Druh Článek ve sborníku
Konference Proceedings of 2022 International Conference on Medical Imaging and Computer-Aided Diagnosis (MICAD 2022)
Citace
www https://link.springer.com/chapter/10.1007/978-981-16-6775-6_26
Doi http://dx.doi.org/10.1007/978-981-16-6775-6_26
Klíčová slova Autoregressive Models, Computer-Aided Diagnosis, Deep Learning, Generative Adversarial Networks, Melanoma, Synthetic Data, Zero-Shot Learning.
Popis Assistive tools to aid in skin cancer detection are experiencing an unprecedented rise with the accessibility of robust and accurate deep learning models. However, in the present applications, only a negligible number of dermatology images come from patients with Fitzpatrick skin types IV–VI, representing brown, dark brown or black skin, respectively. In this study, we demonstrate the utilization of Zero-Shot Text-to-Image autoregressive models to generate synthetic medical data for improved balance in training CAD classification models with minimized racial bias. Synthetically generated images of skin lesions were assessed by an experienced dermatologist using the ABCD rule and differential diagnostics, and subsequently validated using a pre-trained ResNet50V2 multi-class classification model.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.